44 Training Options
Metric options built into the train function:
For continuous outcomes:
- \(RMSE\)
- \(R^2\)
For categorical outcomes:
- Accuracy (Fraction correct)
- Kappa (Measure of concordance)
44.1 trainControl Resampling
## function (method = "boot", number = ifelse(grepl("cv", method),
## 10, 25), repeats = ifelse(grepl("[d_]cv$", method), 1, NA),
## p = 0.75, search = "grid", initialWindow = NULL, horizon = 1,
## fixedWindow = TRUE, skip = 0, verboseIter = FALSE, returnData = TRUE,
## returnResamp = "final", savePredictions = FALSE, classProbs = FALSE,
## summaryFunction = defaultSummary, selectionFunction = "best",
## preProcOptions = list(thresh = 0.95, ICAcomp = 3, k = 5,
## freqCut = 95/5, uniqueCut = 10, cutoff = 0.9), sampling = NULL,
## index = NULL, indexOut = NULL, indexFinal = NULL, timingSamps = 0,
## predictionBounds = rep(FALSE, 2), seeds = NA, adaptive = list(min = 5,
## alpha = 0.05, method = "gls", complete = TRUE), trim = FALSE,
## allowParallel = TRUE)
## NULL
Method:
- boot = bootstrapping
- boot632 = bootstrapping with adjustment
- cv = cross validation
- repeatedcv = repeated cross validation
- LOOCV = Leave one out cross validation
Number:
- For boot/cross validation
- Number of subsamples to take
Repeats:
- Number of times to repeat subsampling
- If this number is large computation time will really increase