21 Prediction

21.1 Prediction of Outcomes

Consider predicting \(Y\) as a value of \(X\)

  • Predicting the price of a diamond given its mass

  • Predicting the height of child given the heights of the parents

  • The obvious estimate for prediction at point \(x_0\) is: \[\hat{\beta_0} + \hat{\beta_1} x_0\]

  • A standard error is needed to create a prediction interval.

  • There’s a distinction between intervals for the regression line at. \[x_0, \hat{\sigma} \sqrt{{1\over n}+{{(x_0 - \bar{X})^2}\over{\sum_{i=1}^n (X_i - \bar{X})^2}}}\]

  • Prediction interval se at: \[x_0, \hat{\sigma} \sqrt{1+ {1\over n}+{{(x_0 - \bar{X})^2}\over{\sum_{i=1}^n (X_i - \bar{X})^2}}}\]